
INTRODUCTION METHOD

AIMS AND OBJECTIVES RESULTS AND DISCUSSION

FUTURE WORK

ACKNOWLEDGEMENTS

In recent years the shift of the role of the GPU (graphics processing

unit), traditionally a fixed function special purpose graphics processor,

to a more general purpose programmable unit has meant greater

productivity from heterogeneous computing[1]. Heterogeneous

computing involves the use of multi-cores, CPUs, GPUs and DSPs

(Digital Signal Processors) to synergistically accelerate large

computations[2]. This is vital in modern applications including

video/audio processing[2]. The use of the OpenCL programming model

is what allows programming between these compute units[3]. The

emergence of the OpenCL framework means that low power

embedded systems can now also implement GPGPU processing

(General Purpose computing on Graphics Processing Units)[1-3].

I would like to acknowledge my supervisor for this project, Dr Rishad Shafik,

for allowing me to work with him and his colleagues in the micro systems

group at Newcastle University. I would also like to acknowledge

postgraduate student Sidharth Maheshwari, who acted as a secondary

point of contact throughout the research project. I would finally like to

thank Newcastle University, for awarding me this scholarship to explore my

interest in this particular research area and in postgraduate study.

The main aim of the internship was trying to learn the OpenCL framework

to appreciate how this method of coding can enable programming across

heterogeneous units such as multi-cores and GPUs. To evaluate this

learning an experiment was devised to identify the productivity of low

power GPUs against CPUs when processing non graphical loads. While

many research papers have looked into the GPGPU based problems with

the goal of maximising speed-up on high end GPUs the goal of this

experiment was to give a low power CPU and GPU a large processing task

and monitor the power consumption and run times.

OBJECTIVE

Learn to understand and write OpenCL programs such that an algorithm

based test can be devised to demonstrate these learnings where the

performance of a low power embedded system's GPU and CPU can be

compared taking into consideration the run times and the power

consumption.

Using the map reduce algorithm for string searching

SOFTWARE

HARDWARE

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

R
u

n
 T

im
e

 (
se

co
n

d
s)

Word Count

Graph showing the CPU and GPU run times with increasing word count

GPU CPU

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 p

o
w

e
r

co
n

su
m

p
ti

o
n

(W
)

Word Count

Graph showing the CPU and GPU power consumption with increasing word

count

A study into low power embedded GPU and CPU run time and power consumption processing non graphical

loads through OpenCL framework

References
[1] A. Maghazeh, U. Bordoloi, P. Eles and Z. Peng, "General Purpose Computing on Low-Power Embedded GPUs: Has It Come of Age?", Liu.diva-portal.org, 2018. [Online]. Available: http://liu.diva-portal.org/smash/get/diva2:610784/FULLTEXT01.pdf. [Accessed: 01- Jul- 2018].

[2] M. Scarpino, OpenCL in action. Shelter Island, N.Y: Manning, 2013.

[3] S. Mittal and J. Vetter, "A Survey of Methods for Analyzing and Improving GPU Energy Efficiency", Academia.edu, 2018. [Online]. Available: https://www.academia.edu/6644474/A_Survey_of_Methods_For_Analyzing_and_Improving_GPU_Energy_Efficiency. [Accessed: 12- Jul- 2018].

The experiment was conducted using the Odroid XU4 connected with the SmartPower2 to measure

the voltage, current and power consumption.

The Odroid was an important part of this experiment containing the low power GPU and CPU units

needed:

• CPU: Arm Cortex – A7 (8 cores)

• GPU: 2 Mali-T628s, one with 4 cores and one with 2 cores

Monitoring CPU activity showed all 8 cores to be operational when running OpenCL codes.

The latest Ubuntu image (15.04) was installed onto the Odroid to provide an operating system. The

OpenCL framework allows the same code to be run on both the CPU and the GPU for run times to be

measured. The run times used are an average of 3 runs of the application for each word count.

Currently it is only possible for either the CPU or the GPU to be used

exclusively when writing OpenCL code on the Odroid. This is down to issues

in the OpenCL installation process. It is hoped that once both the CPU and

GPU are simultaneously operational further work can be done exploring the

CPU vs GPU performance.

By splitting the work load between the CPU and GPU and once again

examining the run times this study can be repeated to find the optimum non

graphical work load distribution between CPU and GPU for string searching

algorithm.

Extending this idea further, once the installation issue is resolved it could be

possible to chain several Odroid XU4s together. This would allow for big data

processing and the run times can then be measured against high end CPUs

and GPUs.

Both results indicate that the GPU is superior to the CPU

in terms of providing faster run time and smaller power

consumption for every word count. While the CPU run

time can be seen to increase quite quickly with

increasing word count the GPU run time increases

slowly. The same is true for the power consumption

graph. On average the GPU run time was calculated to be

56.4% faster and consume 59.3% less power.

After the maximum word count shown on the graph the

Odroid reached its maximum computational ability and

the system crashed with word counts above 2500000.

While the GPU does appear to process the data quicker

and consume less power for this application intelligent

trade-offs should be made when applying this finding to

other non graphic work loads. Other practical aspects

need to be considered such as the fact the GPU has

more restricted features compared to the CPUs (e.g.

limited or no user defined memory, small instruction set

and limited number of registers).

In short if the restrictions of the GPU do not pose a

problem for the data to be processed then a larger

proportion of the processing task can be given to the

GPU.

How Well Can Low-Power Embedded GPUs Handle Large Non-

Graphical Tasks?

Map reduce is a mathematical algorithm used to divide a task into small parallel friendly parts that can be assigned to each

CPU or GPU core[2]. The string searching algorithm works by first declaring a vector that contains the words that are being

searched for, this is shown by the identify vector in the diagram. The source text is then read from and each 16 character

length vector (including spaces and punctuation) is compared with the identify vector. If the letters match then it scores a 1

otherwise it scores a 0. The 1s and 0s are then collated in a result vector.

Shown to the left is

the Odroid XU4 and

SmartPower2 meter

used to get the

readings for the

power consumption

IDENTIFY

SOURCE

RESULT

Sheikh Tousif Rahman

Student Number: 16008908

Contact: s.rahman@newcastle.ac.uk

